
Exact solution of an electron system combining two different t-J models

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1999 J. Phys. A: Math. Gen. 32 3535

(http://iopscience.iop.org/0305-4470/32/19/306)

Download details:

IP Address: 171.66.16.105

The article was downloaded on 02/06/2010 at 07:30

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/32/19
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.32 (1999) 3535–3553. Printed in the UK PII: S0305-4470(99)98310-5

Exact solution of an electron system combining two different
t–J models

J Abad† and M Ŕıos‡
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Zaragoza, Spain

Received 9 October 1998, in final form 23 February 1999

Abstract. A new strongly correlated electron model is presented. This is formed by two types of
sites: one where double occupancy is forbidden, as in thet–J model, and the other where double
occupancy is allowed but vacancy is not allowed, as in an inverset–J model. The Hamiltonian
shows nearest and next-to-nearest neighbour interactions and it is solved by means of a modified
algebraic nested Bethe ansatz. The number of sites where vacancy is not allowed, may be treated as
a new parameter if the model is regarded as at–J model with impurities. The ground and excited
states are described in the thermodynamic limit.

1. Introduction

Strongly correlated systems are very interesting in view of their relation with highTc
superconductivity. It is very important to study the one-dimensional systems because they
may share properties with two-dimensional ones [1]. Thet–J model was proposed by Zhang
and Rice [2] and it describes electrons on a lattice excluding the double occupancy of any site,
in opposition to the Hubbard model [3], where the double occupancy is not forbidden. At the
point J = 2t the model (called supersymmetric) is associated to a graded Lie algebra and it
is exactly integrable. Their integrability was studied in [4], although equivalent systems had
been solved by other authors as in [5, 6]. The ground state and the excitation spectrum were
investigated in [7, 8] and low-lying excitations close to half-filling were treated in [9]. The
integration of the model by means of the nested algebraic Bethe ansatz (NABA) [10, 11] in the
framework of the graded quantum inverse scattering method (GQISM) [12] was established
in [13]. The completeness of the Bethe states was considered in [14] and the properties of the
model in an external magnetic field were studied in [15].

In this paper we propose a model with two different kinds of sites. The sites of the first type
may be unoccupied or occupied by an electron with spin up or down, but double occupancy
is not allowed. We call these sitest–J . The sites of the second type may be occupied by an
electron with spin up or down, or by two electrons with antiparallel spins in a singlet state, but
vacancies are not possible. We call these sites ‘J–t ’ because it is as an inverset–J model. We
regard these sites as frustrated Hubbard sites. Othert–J models with impurities have been
proposed by different authors [16].

In order to make the inhomogeneous system we use theR-matrix of thet–J model and
the graded Yang–Baxter equation (GYBE). We take another solution that we associate with
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the ‘J–t ’ sites, which can give us another integrable homogeneous system. The system that
we propose is formed by alternatingNh states in thet–J sites withNp states in theJ–t sites.

As we will see, the method is trivially dependent of the number of sites of each class,
and then we diagonalize the transfer matrix for a general lattice withNh andNp states in the
respectives sites, although we use an alternating chain withNh = Np = N/2 to compute
the Hamiltonian. This Hamiltonian is the sum of nearest neighbour interaction terms (two-
site operators) and next-to-nearest neighbour interaction terms (three-site operators). The
diagonalization is made using the method that we proposed in [17]. This method is more
general than the usual NABA, and it has been used by other authors in a different system [18].
Recently, Links and Foerster have proposed a model [19] with the same kind of alternating
site states that in our model and they solve it with the same method.

As we said before, and will see as we proceed through this paper, all results that we have
are independent of the number and position of the two kinds of sites, then our system can be
considered as at–J model with impuritiesJ–t .

2. The model

Thet–J model may be deduced, in the framework of the graded Lie algebras, by means of the
L-operator. We are going to take the operators given by Eßler and Korepin in [13].

L(t−J )(λ) = λI + iP (2.1)

where

I
a,b
c,d = δa,bδc,d (2.2a)

P
a,b
c,d = δa,dδb,c(−1)εbεd (2.2b)

andεj are the Grassmann parities of the basis vectors. We will use in this paper the Fermion–
Fermion–Boson (FFB) basis, that is,ε1 = ε2 = 1 andε3 = 0. The upper indices are in the
space that we call auxiliary, and the lower indices in the site space.

The operatorL(t−J ) verifies the GYBE

R(λ− µ)[L(t−J )(λ)⊗ L(t−J )(µ)] = [L(t−J )(µ)⊗ L(t−J )(λ)]R(λ− µ) (2.3)

where theR-matrix is given by

R(λ) = λP + iI (2.4)

and the tensor product is the graded tensor product, which is defined as

(F ⊗G)a,bc,d = Fa,bGc,d(−1)εc(εa+εb). (2.5)

Equation (2.3) in components is,

R(λ− µ)a,c1
b,d1
L(t−J )(λ)c1,c

g,e1
L(t−J )(µ)d1,d

e1,h
(−1)εd1(εc1+εc)

= L(t−J )(µ)a,c2
g,e2
L(t−J )(λ)b,d2

e2,h
R(λ− µ)c2,c

d2,d
(−1)εb(εa+εc2). (2.6)

In order to make a mixed lattice, we need anotherL-operator associated to theJ–t sites.
That operator must fulfil the same GYBE equation (2.3). Inspired by the same methods given
in [13], we have found that

L(J−t)(λ) =
(
λ− i

2

)
I − iQ (2.7)

verifies our requirements, being

Q
a,b
c,d = δa,cδb,d(−1)εaεc . (2.8)
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We have used thet–J basis

|0〉 =
( 0

0
1

)
| ↓〉 =

( 0
1
0

)
| ↑〉 =

( 1
0
0

)
(2.9)

and theJ–t basis

| ↓↑〉 =
( 0

0
1

)
| ↓〉 =

( 0
1
0

)
| ↑〉 =

( 1
0
0

)
. (2.10)

It is easy to show by direct calculation

L(J−t)(λ)a,bα,βL
(J−t)(−λ)β,γb,c = ρ(λ)δa,cδα,γ (2.11)

with

ρ(λ) = − 1
4 − λ2. (2.12)

We build the monodromy matrix alternating thet–J and theJ–t L-operators.

Ta,b(λ,w) = L(t−J )(λ)a,c1
a1,b1

L(J−t)(λ +w)c1,c2
α1,β1

L(t−J )(λ)c2,c3
a2,b2

. . . L(t−J )(λ)cN−2,cN−1
aN/2,bN/2

L(J−t)(λ +w)cN−1,b

αN/2,βN/2

×(−1)[
∑N/2

i=1 (ai+bi )
∑N/2

j=1(αj+aj+1)+
∑N/2−1

i=1 (αi+βi)
∑N/2−1

j=1 (aj+1+αj+1)] (2.13)

with N even andaj = αj = 0 if j > N/2. We have used the standard matrix product in the
auxiliary space and the graded tensorial product in the site space.

In the auxiliary space we can write the monodromy matrix as

T (λ,w) =
(
A1,1(λ,w) A1,2(λ,w) B1(λ,w)

A2,1(λ,w) A2,2(λ,w) B2(λ,w)

C1(λ,w) C2(λ,w) D(λ,w)

)
. (2.14)

The transfer matrix is given by

F(λ,w) = strace(T (λ,w)) = D(λ,w)− A1,1(λ,w)− A2,2(λ,w) (2.15)

and the verification of (GYBE) by the monodromy matrix assures the commutation of the
transfer matrices for different values of the argument, that is

[F(λ,w), F (µ,w)] = 0. (2.16)

The corresponding associate Hamiltonian is obtained by taking the first logarithmic
derivative of the transfer matrix at equal zero spectral parameter

H(w) = −iJ
d

dλ
ln(F (λ,w))

∣∣∣∣
λ=0

(2.17)

whereJ is a constant.
We write this Hamiltonian as the sum of both operators: the nearest neighbour interaction

term and the next-to-nearest neighbour interaction term

H(w) = −iJ

ρ(w)

N−1∑
j=1
j odd

h
[1]
j,j+1 +

−iJ

c1ρ(w)

N−1∑
j=1
j odd

h
[2]
j,j+1,j+2 (2.18)

with R(0) = c1I and

(h
[1]
j,j+1)a,b;β,γ = L̇(J−t)(w)a,cβ,δL(J−t)(−w)δ,γc,b (2.19a)

(h
[2]
j,j+1,j+2)a,b;β,γ ;c,d = L(J−t)(w)a,eβ,δL̇(t−J )(0)e,dc,f L(J−t)(−w)δ,γf,b(−1)εc(εβ+εδ). (2.19b)
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The dot over the operator shows the derivative.
Takingw = 0 we find that,

H = J
N−1∑
j=1
j odd

{
− 2

{ ∑
σ=↑,↓

(cj,σ dj+1,σ − h.c.)− 2nj n̄j+1

+
∑
σ=↑,↓

(dj+1,σ cj+2,σ − h.c.)− 2n̄j+1nj+2

}
− 6nj − 4n̄j+1

+3

{ ∑
σ=↑,↓

(c
†
j,σ cj+2,σ + h.c.) + (S−j S

+
j+2 + S+

j S
−
j+2 + 2SzjS

z
j+2)

}
− 11

2 njnj+2

−2

{ ∑
σ=↑,↓

ε(σ )[(Szj d
†
j+1,σ c

†
j+2,σ − c†

j,σ S
z
j+1cj+2,σ − c†

j,σ d
†
j+1,σ S

z
j+2) + h.c.]

}
+3

{[ ∑
σ=↑,↓

(cj,σ dj+1,σ − 3h.c.)

−2( 1
4nj n̄j+1 + S−j S

−
j+1 + S+

j S
+
j+1 + 2SzjS

z
j+1)

]
· nj+2

}
+nj ·

[ ∑
σ=↑,↓

(dj+1,σ cj+2,σ − 3h.c.)

+2( 1
4 n̄j+1nj+2 + S−j+1S

−
j+2 + S+

j+1S
+
j+2 + 2Szj+1S

z
j+2)

]
−2

{ ∑
σ=↑,↓

[(Sτ(σ)j dj+1,σ cj+2,σ̄ − cj,σ Sτ(σ )j+1 cj+2,σ̄ − c†
j,σ d

†
j+1,σ̄ S

τ(σ )
j+2 ) + h.c.]

}
−
{

3
∑
σ=↑,↓

(c
†
j,σ n̄j+1cj+2,σ + h.c.)

+2(S−j n̄j+1S
+
j+2 + S+

j n̄j+1S
−
j+2 + 2Szj n̄j+1S

z
j+2)

}}
+ 3N (2.20)

wherec† andn are the creation operator and the number of electrons operator in thet–J sites,
andd† andn̄ are the same operators in theJ–t sites. Also,S is the spin operator. In terms of
the elements of theLt−J operators, they are

[c†
↑]a,b =

1

i
L(t−J )(λ)3,1a,b

[c†
↓]a,b =

1

i
L(t−J )(λ)3,2a,b

[c↑]a,b = 1

i
L(t−J )(λ)1,3a,b

[c↓]a,b = 1

i
L(t−J )(λ)2,3a,b

[S+]a,b = −1

i
L(t−J )(λ)2,1a,b (2.21)

[S−]a,b = −1

i
L(t−J )(λ)1,2a,b

[Sz]a,b = i

2
{L(t−J )(λ)1,1a,b − L(t−J )(λ)2,2a,b}
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[n]a,b = −i
λ + i

λ− i
{L(t−J )(λ)1,1a,b +L(t−J )(λ)2,2a,b} +

2(λ2 − iλ + 1)

λ(iλ + 1)
L(t−J )(λ)3,3a,b

and in terms of theLJ−t

[d†
↑]a,b =

1

i
L(J−t)(λ)1,3a,b

[d†
↓]a,b =

1

i
L(J−t)(λ)2,3a,b

[d↑]a,b = −1

i
L(J−t)(λ)3,1a,b

[d↓]a,b = −1

i
L(J−t)(λ)3,2a,b

[S+]a,b = 1

i
L(J−t)(λ)1,2a,b

[S−]a,b = 1

i
L(J−t)(λ)2,1a,b

[Sz]a,b = − i

2
{L(J−t)(λ)1,1a,b − L(J−t)(λ)2,2a,b}

[n]a,b = −i{L(J−t)(λ)1,1a,b +L(J−t)(λ)2,2a,b} −
2λ− 3i

2λ− 3i
L(J−t)(λ)3,3a,b.

(2.22)

We have also used the following notation:

σ̄ =
{
↓ if σ =↑
↑ if σ =↓ (2.23a)

τ(↑) =↓ τ(↓) =↑ ε(↑) = 1 ε(↓) = −1. (2.23b)

Obviously, the Hamiltonian (2.20) is not Hermitian, however as we will see in section 4, it has
real eigenvalues. [20, 21] show that for the supersymmetrict–J no Hermitian Hamiltonians
with quantum group invariance enjoy this property. In a most general case, in [22] complex
Hamiltonians withPT invariance is proof that they have real spectra.

3. Algebraic Bethe ansatz

The monodromy operatorT verifies the GYBE, independently of the combination oft–J and
J–t sites that we take in our system. Then, we are going to takeNh sites of the first type and
Np of the second. The space of states of the total system will be,

E =
Nh⊗
i

Et−Ji

Np⊗
j

EJ−tj (3.1)

whereEt−Ji is the space of states of the sitei andEJ−tj the space of states of the sitej .
In order to diagonalize the Hamiltonian by means of the nested algebraic Bethe ansatz

(NABA), we should need to find a state of the system that verifies [12],

Ai,j‖v〉 ∝ δi,j‖v〉 (3.2)

but this is not the case. To overcome the problem, we must follow a modified NABA (MNABA),
which is described in [17]. For this purpose, in a first step, we build the vacuum subspace

� =
Nh⊗
i

|0〉i
Np⊗
j

{e}j (3.3)
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where{e}j denotes the subspace generated by the vectors| ↓〉 and| ↑〉 in a J–t sitej . Any
‖w〉 vector in the vacuum subspace verifies

Ai,j (λ)‖w〉 ∈ � i, j = 1, 2 (3.4a)

Ci(λ)‖w〉 6= 0 i = 1, 2 (3.4b)

Bi(λ)‖w〉 = 0 i = 1, 2 (3.4c)

D(λ)‖w〉 = [a′(λ)]N0[b1(λ)]
Np‖w〉 (3.4d)

where‖w〉 ∈ � and

a′(λ) = λ + i b1(λ) = λ− 1
2 . (3.5)

From the GYBE we get the relation of commutation

Aa,b(µ)Cc(λ) = (−1)εaεpg(µ− λ)r(µ− λ)d,cp,bCp(λ)Aa,d(µ) + h(µ− λ)Cb(µ)Aa,c(λ)
(3.6a)

D(µ)Cc(λ) = g(λ− µ)Cc(λ)D(µ)− h(λ− µ)Cc(µ)D(λ) (3.6b)

Ca(λ)Cb(µ) = r(λ− µ)d,bc,aCc(µ)Cd(λ) (3.6c)

where

g(µ) = µ + i

µ
(3.7a)

h(µ) = i

µ
(3.7b)

r(µ)
a,b
c,d =

h(µ)

g(µ)
δa,bδc,d − 1

g(µ)
δa,dδb,c. (3.7c)

In order to solve the equation

F(λ)9 = 3(λ)9 (3.8)

we build the state,

9(Eλ) ≡ 9(λ1, . . . , λr) = Ca1(λ1) . . . Car (λr)X
a1...ar‖1〉 (3.9)

with ‖1〉 ∈ �. When we apply theD(µ) operator to9, using (3.6a)–(3.6c), we push this
operator to the right of theC operators, and we get a wanted term characterized by theC

operators conserve their arguments, and several unwanted terms characterized by the arguments
of theC operators are interchanged. The wanted term is,

[a′(µ)]N0[b1(µ)]
Np

r∏
j=1

g(λj − µ)9 (3.10)

and thekth unwanted term is,

−h(λk − µ)[a′(λk)]N0[b1(λk)]
Np

r∏
j=1

g(λj − λk)Cbk (µ)Cbk+1(λk+1)

. . . Cbk−1(λk−1)M
(k−1)(λk−1)

b1,...,br
a1,...,ar

Xa1,...,ar‖1〉 (3.11)

with M given in appendix A.
The application ofAa,a to the state9 is a little larger but straightforward. We again get

wanted and unwanted terms, and after some calculations we find the wanted term,
r∏
j=1

g(µ− λj )Cp1(λ1) . . . Cpr (λr)Aa,b(µ)[Z(µ, Eλ)p1,...,pr
a1,...,ar

]b,aX
a1,...,ar‖1〉 (3.12)
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where theZ operator is

[Z(µ, Eλ)p1,...,pr
a1,...,ar

]i,j = L(1)(µ− λr)i,dr−1
pr ,ar

L(1)(µ− λr−1)
dr−1,dr−2
pr−1,ar−1

. . . L(1)(µ− λ2)
d2,d1
p2,a2

L(1)(µ− λ1)
d1,j
p1,a1

(3.13)

with

L(1)(λ)
f,d

e,b = r(λ)a,bc,dP (1)e,af,c (3.14)

andP (1)e,af,c = δe,cδa,f (−1)εaεc .
Due toj = 1 or j = 2, we haveεj = 1, then (3.14) becomes

L(1)(λ)
f,d

e,b = −r(λ)f,be,d . (3.15)

Now we will get ready to prepare the second step of the MNABA. We define the
monodromy matrix at second level as

T (2)(µ, Eλ) = A(µ) · Z(µ, Eλ). (3.16)

In the auxiliary space, that is now two-dimensional, this operator can be written as

T (2)(µ, Eλ) =
(
A(2)(µ, Eλ) C(2)(µ, Eλ)
B(2)(µ, Eλ) D(2)(µ, Eλ)

)
. (3.17)

The transfer matrix at second level is

F (2)(µ, Eλ) = strace[T (2)(µ, Eλ)] = −A(2)(µ, Eλ)−D(2)(µ, Eλ). (3.18)

Now, the wanted term (3.12) can be written as,

−
r∏
j=1

g(µ− λj )Cp1(λ1) . . . Cpr (λr)F
(2)(µ, Eλ)p1,...,pr

a1,...,ar
Xa1,...,ar‖1〉 (3.19)

and thekth unwanted term as

h(µ− λk)
r∏
j=1
j 6=k

g(λk − λj )Cpk (µ)Cpk+1(λk+1) . . . Cpr (λr)Cp1(λ1)

. . . Cpk−1(λk−1)M
(k−1)(λk−1)

p1,...,pr
b1,...,br

F (2)(λk, Eλ)b1,...,br
a1,...,ar

Xa1,...,ar‖1〉. (3.20)

We have found a new problem; we have to solve the equation,

F (2)(µ, Eλ)X‖1〉 = 3(2)(µ, Eλ)X‖1〉. (3.21)

For this purpose we use the fact thatL(1)(λ) verifies the GYBE with ther-matrix, and then we
can solve (3.21) following the same path applied before.

The new vacuum is

‖1′〉 =
N⊗
i

|0 ↓ 〉i
r⊗
j

(
1
0

)
(3.22)

where the state|0 ↓ 〉 is composed by a state|0〉 in thet–J sites and| ↓〉 in theJ–t sites. The
first tensorial product is the space whereA(µ) works, whereasZ(µ, Eλ) works in the second
one. This vacuum verifies

B(2)(µ, Eλ)‖1′〉 = 0 (3.23a)

C(2)(µ, Eλ)‖1′〉 6= 0 (3.23b)

A(2)(µ, Eλ)‖1′〉 = [b(µ)]N0[b1(µ)]
Np

r∏
j=1

g(λj − µ)
g(µ− λj )‖1

′〉 (3.23c)

D(2)(µ, Eλ)‖1′〉 = [b(µ)]N0[a1(µ)]
Np

r∏
j=1

1

g(µ− λj )‖1
′〉 (3.23d)
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with

a1(λ) = λ +
i

2
b(λ) = λ. (3.24)

The new relations of commutation are obtained from the GYBE forT (2)

D(2)(µ)C(2)(λ) = g(λ− µ)C(2)(λ)D(2)(µ) + h(µ− λ)C(2)(µ)D(2)(λ) (3.25a)

A(2)(µ)C(2)(λ) = g(µ− λ)C(2)(λ)A(2)(µ) + h(λ− µ)C(2)(µ)A(2)(λ). (3.25b)

In the second level, we build the state

X‖1〉 ≡ 9(2)(µ1, . . . , µs) = C(2)(µ1) . . . C
(2)(µs)‖1′〉. (3.26)

ApplyingA(2) to this state we get a wanted term

[b(µ)]N0[b1(µ)]
Np

s∏
i=1

g(µ− µi)
r∏
j=1

g(λj − µ)
g(µ− λj )9

(2) (3.27)

and unwanted terms of which, thekth is

h(µk − µ)[b(µk)]N0[b1(µk)]
Np

s∏
i=1
i 6=k

g(µk − µi)

×
r∏
j=1

g(λj − µk)
g(µk − λj )C

(2)(µ)C(2)(µk+1) . . . C
(2)(µk−1)‖1′〉. (3.28)

Also forD(2) we get a wanted and unwanted, the wanted is,

[b(µ)]N0[a1(µ)]
Np

s∏
i=1

g(µi − µ)
r∏
j=1

1

g(µ− λj )9
(2) (3.29)

and thekth unwanted term is,

h(µ− µk)[b(µk)]N0[a1(µk)]
Np

s∏
i=1
i 6=k

g(µi − µk)

×
r∏
j=1

1

g(µk − λj )C
(2)(µ)C(2)(µk+1) . . . C

(2)(µk−1). (3.30)

The cancellation of the unwanted terms, (3.11) with (3.20) and (3.28) with (3.30), gives
us the ansatz equations[

b(λk)

a′(λk)

]N0

=
s∏
i=1

1

g(λk − µi) k = 1, . . . , r (3.31a)

[
a1(µn)

b1(µn)

]Np
=

r∏
j=1

g(λj − µn)
s∏
i=1
i 6=n

g(µn − µi)
g(µi − µn) n = 1, . . . , s. (3.31b)

On the other hand, collecting the wanted terms we get the eigenvalue of the transfer matrix,

3(µ) = [a′(µ)]N0[b1(µ)]
Np

r∏
j=1

g(λj − µ)− [b(µ)]N0

×
{

[b1(µ)]
Np

s∏
i=1

g(µ− µi)
r∏
j=1

g(λj − µ) + [a1(µ)]
Np

s∏
i=1

g(µi − µ)
}
.

(3.32)
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4. Thermodynamics of the model

The eigenstates of the transfer matrix can be characterized by observables operators that
commute with it, and then with the Hamiltonian. We have found that the following observables

O1 =
N−1∑
i=1
i odd

(ni + n̄i+1) (4.1a)

O2 =
N−1∑
i=1
i odd

(nholes
i − n̄pairs

i+1 ) (4.1b)

O3 =
N−1∑
i=1
i odd

(ni,↑ + n̄i+1,↓) (4.1c)

O4 =
N−1∑
i=1
i odd

(ni,↓ + n̄i+1,↑) (4.1d)

commute with the transfer matrix

[Oi, F (λ)] = 0 i = 1, . . . ,4. (4.2)

We must note thatO1 is the total number of the electrons,O2 is the difference between
the number of holes and number of electron pairs,O3 is the number of electrons with the
spin up in the{|0〉, | ↓〉, | ↑〉} base plus the number of electrons with the spin down in the
{| ↓,↑〉, | ↓〉, | ↑〉} base andO4 is the complimeny ofO3. Only two of these quantities are
independent, the others are linearly dependent and thus, we are going to useO1 andO3.

The commutation relations of theCi creation operators with these observables allows us
to relate their eigenvalues with the numbersr ands of the ansatz equations. They are:

[O1, Ci ] = Ci (4.3a)

[O2, Ci ] = −Ci (4.3b)

[O3, Ci ] = δ1,iCi (4.3c)

[O4, Ci ] = δ2,iCi (4.3d)

and a long but straighforward calculation, gives us the action of these operators on the eigenstate
ψ(λ1, . . . , λr),

O1ψ(λ1, . . . , λr) = (r +Np)ψ(λ1, . . . , λr) (4.4a)

O2ψ(λ1, . . . , λr) = (−r +Nh)ψ(λ1, . . . , λr) (4.4b)

O3ψ(λ1, . . . , λr) = (r − s +Np)ψ(λ1, . . . , λr) (4.4c)

O4ψ(λ1, . . . , λr) = sψ(λ1, . . . , λr). (4.4d)

The next step is to solve the equations of the ansatz in the thermodynamic limit, i.e., when
N , Nh andNp are infinity, butNh/N andNp/N remain finite. For this, it is convenient to
reparametrize the roots as follows:

λj = v(1)j −
i

2
j = 1, . . . , r (4.5a)

µk = v(2)k k = 1, . . . , s (4.5b)
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and then the equations (3.31a), (3.31b) are written[
v
(1)
k − i

2

v
(1)
k + i

2

]Nh
=

s∏
j=1

v
(1)
k − v(2)j − i

2

v
(1)
k − v(2)j + i

2

(4.6a)

[
v
(2)
k + i

2

v
(2)
k − i

2

]Np
= −

r∏
j=1

v
(2)
k − v(1)j − i

2

v
(2)
k − v(1)j + i

2

s∏
l=1

v
(2)
k − v(2)l + i

v
(2)
k − v(2)l − i

. (4.6b)

The energy is obtained with

E = −iJ
d

dλ
ln3(λ)

∣∣∣∣
λ=0

= −iJ

[
Nh
ȧ′(0)
a′(0)

+Np
ḃ1(0)

b1(0)
−

r∑
j=1

ġ(λj )

g(λj )

]
(4.7)

and using (4.5)

E = J
[
−Nh + 2Np +

r∑
j=1

1

(v
(1)
j )

2 + 1
4

]
. (4.8)

It is convenient to introduce the function,

φ(x) ≡ 2 arctan(x) = −i ln
1 + ix

1− ix
(4.9)

and taking logarithms in the equations of the ansatz (4.6a), (4.6b), we can write

Nhφ(2v
(1)
k )−

s∑
j

φ(2v(1)k − 2v(2)j ) = 2πI (1)k (4.10a)

Npφ(2v
(2)
k ) +

r∑
j

φ(2v(2)k − 2v(1)j )−
s∑
l

φ(v
(2)
k − v(1)l ) = 2πI (2)k (4.10b)

with I (1)k andI (2)k integers or half-odd integers and each set of these numbers determines a
solution for rootsv(1)k andv(2)k .

In solving a BAE set, we have real roots and complex conjugate roots grouped in clusters
that we calln-strings. The solution for the ground state in the thermodynamic limit can be
obtained minimizing the free energy distribution [23]. In the Heisenberg model with arbitrary
spin it is found that the solution for the ground state is formed by two-string roots [24]. In the
t–J model, the two-level roots are mixed, they proliferate rapidly and it becomes difficult to
determinate the roots which parametrize the ground state. Numerical analysis suggests that
the structure of solutions in the ground state are two-string roots [8]. We assume the same
hypothesis in our model.

Then, the solution in the ground state is given by two-string roots and for the lower excited
states some roots are real. The equations (4.10a), (4.10b) can be reparametrized supposing
that, in ther roots of the first level,v(1)j , j = 1, . . . , r, there are 2r1 roots of the form

v
(1)
j = εl ±

i

2
l = 1, . . . , r1 (4.11)

with εl real, that are grouped inr1 two-strings. The restr − 2r1 roots are taken to be real and
they are designed by,

v
(1)
j = ηl l = 1, . . . , (r − 2r1). (4.12)

With the same assumptions, thes rootsv(2)j of the second level are written,

v
(2)
j = βl ±

i

2
l = 1, . . . , s1

v
(2)
j = νl l = 1, . . . , (s − 2s1)

(4.13)
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with βl andνl both real.
Taking this into account, the equations (4.10a), (4.10b) result for the respective roots.

Nhφ(2ηk)−
s−2s1∑
i=1

φ(2ηk − 2νi)−
s1∑
i=1

φ(ηk − βi) = 2πI (1)k (4.14a)

Nhφ(εk)−
s−2s1∑
i=1

φ(εk − νi)−
s1∑
i=1

[φ(2εk − 2βi) + φ( 2
3εk − 2

3βi)] = 2πJ (1)k (4.14b)

Npφ(2νk) +
r−2r1∑
j=1

φ(2νk − 2ηj ) +
r1∑
j=1

φ(νk − εj )−
s−2s1∑
i=1

φ(νk − νi)

−
s1∑
i=1

[φ(2νk − 2βi) + φ( 2
3νk − 2

3βi)] = 2πI (2)k (4.14c)

Npφ(βk) +
r−2r1∑
j=1

φ(βk − ηj ) +
r1∑
j=1

[φ(2βk − 2εj ) + φ( 2
3βk − 2

3εj )]

−
s−2s1∑
i=1

[φ(2βk − 2νi) + φ( 2
3βk − 2

3νi)] −
s1∑
i=1

[2φ(βk − βi) + φ( 1
2(βk − βi))]

= 2πJ (2)k (4.14d)

where we have used the identities in appendix B.
In the thermodynamic limit the system is described in the language of distribution functions

of roots in both levels with particles and holes. In our case we define it as follows:

ρ1 = lim
N→∞

1

N(ηj+1− ηj ) σ1 = lim
N→∞

1

N(εj+1− εj )
ρ2 = lim

N→∞
1

N(ρj+1− ρj ) σ2 = lim
N→∞

1

N(βj+1− βj )
(4.15)

and we call [B1], [B2], [C1] and [C2] the regions whereρ1 andρ2, σ1 andσ2 are defined
respectively.

As usual [25], we introduce the functions,

Zρ1(λ) =
1

2πN

[
Nhφ(2λ)−

s−2s1∑
i=1

φ(2λ− 2νi)−
s1∑
i=1

φ(λ− βi)
]

(4.16a)

Zσ1(λ) =
1

2πN

[
Nhφ(λ)−

s−2s1∑
i=1

φ(λ− νi)−
s1∑
i=1

[φ(2λ− 2βi) + φ( 2
3λ− 2

3βi)]

]
(4.16b)

Zρ2(λ) =
1

2πN

[
Npφ(2λ) +

r−2r1∑
j=1

φ(2λ− 2ηj ) +
r1∑
j=1

φ(λ− εj )−
s−2s1∑
i=1

φ(λ− νi)

−
s1∑
i=1

[φ(2λ− 2βi) + φ( 2
3λ− 2

3βi)]

]
(4.16c)

Zσ2(λ) =
1

2πN

[
Npφ(λ) +

r−2r1∑
j=1

φ(λ− ηj ) +
r1∑
j=1

[φ(2λ− 2εj ) + φ( 2
3λ− 2

3εj )]

−
s−2s1∑
i=1

[φ(2λ− 2νi) + φ( 2
3λ− 2

3νi)] −
s1∑
i=1

[2φ(λ− βi) + φ( 1
2(λ− βi))]

]
.

(4.16d)
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These functions are monotonically increasing in their respective definition regions [B1/2]
and [C1/2], and their values are integers whenλ takes the value of a root. Besides, there are
other values ofλ where theZ functions take a integer or a half-odd integer value, but do not
correspond to a root. We call each of these values a hole. The distribution functions are the
derivatives of theZ functions [25],

d

dλ
Zi(λ) ≈ N

Nh/p
ρi(λ) +

1

Nh/p

∑
i=1

δ(λ− θi) (4.17)

whereθi are the position of the corresponding holes. The thermodynamic limit is obtained by
doing,

lim
N→∞

1

N

∑
i

f (λi) ≈
∫

dλ f (λ)ρ(λ). (4.18)

Then, from (4.16a)–(4.16d), the corresponding distribution functions in this limit are,

N

Nh
ρ1(λ) = 1

2π

[
2φ′(2λ)− 2N

Nh

∫
[B2]

φ′(2λ− 2µ)ρ2(µ) dµ− N

Nh

∫
[C2]

φ′(λ− µ)σ2(µ) dµ

]
(4.19a)

N

Nh
σ1(λ) = 1

2π

[
2φ′(λ)− N

Nh

∫
[B2]

φ′(λ− µ)ρ2(µ) dµ

−2N

Nh

∫
[C2]

[φ′(2(λ− µ)) + 1
3φ
′( 2

3(λ− µ))]σ2(µ) dµ

]
(4.19b)

N

Np
ρ2(λ) = 1

2π

[
2φ′(2λ) +

2N

Np

∫
[B1]

φ′(2λ− 2µ)ρ1(µ) dµ

+
N

Np

∫
[C1]

φ′(λ− µ)σ1(µ) dµ− N

Np

∫
[B2]

φ′(λ− µ)ρ2(µ) dµ

−2N

Np

∫
[C2]

[φ′(2(λ− µ)) + 1
3φ
′( 2

3(λ− µ))]σ2(µ) dµ

]
(4.19c)

N

Nh
σ2(λ) = 1

2π

[
φ′(λ) +

N

Np

∫
[B1]

φ′(λ− µ)ρ1(µ) dµ

+
2N

Np

∫
[C1]

[φ′(2(λ− µ)) + 1
3φ
′( 2

3(λ− µ))]σ1(µ) dµ

+
2N

Np

∫
[B2]

[φ′(2(λ− µ)) + 1
3φ
′( 2

3(λ− µ))]ρ2(µ) dµ

− N
Np

∫
[C1]

[2φ′(λ− µ) + 1
2φ
′( 1

2(λ− µ))]σ2(µ) dµ

]
. (4.19d)

Quantities corresponding to observables defined before, can be found on this state in the
thermodynamic limit in the same form, so the energy is given by

E

N
= J

[−Nh + 2Np
N

+ 2
∫

[B1]
φ′(2µ)ρ1(µ) dµ +

∫
[C1]

φ′(µ)σ1(µ) dµ

]
. (4.20)

TheO1 index (number of electrons) defined in (4.1a) is given by

ne ≡= O1

N
= r +Np

N
= Np

N
+
∫

[B1]
ρ1(µ) dµ +

∫
[C1]

σ1(µ) dµ. (4.21)
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The difference of magnetizationSz between thet–J sites minus the magnetization in theJ–t
sites (4.1c), (4.1d),

sz = Szt−J − SzJ−t
N

= O3−O4

2N
= 1

2N
(r +Np − 2s)

= ne

2
−
∫

[B2]
ρ2(µ) dµ− 2

∫
[C2]

σ2(µ) dµ. (4.22)

Using (4.19b), (4.19c) and (4.20), we find an important relation,

E

N
= J

[
Nh − 2Np

N
− 2π(σ1(0)− ρ2(0))

]
. (4.23)

In our model, as we said before, we are going to suppose that the configuration of the
ground state is given by two-string roots in both levels of the BAE, as it is suggested for the
t–J model in [8]. With this hypothesis, sinceρ1 = ρ2 = 0, the equations (4.19a)–(4.19d) are
reduced to two equations and are simplified considerably,

N

Nh
σ1(λ) = 1

2π

[
2φ′(λ)− 2N

Nh

∫
[C2]

[φ′(2(λ− µ)) + 1
3φ
′( 2

3(λ− µ))]σ2(µ) dµ

]
(4.24a)

N

Nh
σ2(λ) = 1

2π

[
φ′(λ) +

2N

Np

∫
[C1]

[φ′(2(λ− µ)) + 1
3φ
′( 2

3(λ− µ))]σ1(µ) dµ

− N
Np

∫
[C1]

[2φ′(λ− µ) + 1
2φ
′( 1

2(λ− µ))]σ2(µ) dµ

]
(4.24b)

and the integration regions can be determined byne andsz:

ne = Np

N
+ 2

∫
[C1]

σ1(µ) dµ (4.25a)

sz = ne

2
− 2

∫
[C2]

σ2(µ) dµ. (4.25b)

These equations can be solved numerically for any fillingne and magnetizationsz.
If we take a system where the integration limits turn out to be,

[C1] = [C2] = (−∞,∞)
our equations can be solved analytically using the Fourier transform and some identities in
appendix B.

Let

σj (λ) =
∫ ∞
−∞

σ̂j (α)e
iαλ dα (4.26)

then we obtain,

σ̂1(α) = Nh

N

e−|α|/2

2 coshα2
− Np
N

e−|α|/2

4 cosh2 α
2

(4.27a)

σ̂2(α) = Nh

N

e−|α|/2

4 cosh2 α
2

+
Np

N

e|α|/2

8 cosh3 α
2

. (4.27b)

These expressions can be used to determinate the main parameters of our system

r

N
= 2

∫
σ1(α) dα = 2σ̂1(0) = 2Nh −Np

2N
(4.28a)

s

N
= 2

∫
σ2(α) dα = 2σ̂2(0) = 2Nh +Np

4N
(4.28b)
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and using (4.25a), (4.25b) we find,

ne = 2Nh +Np
2N

(4.29a)

sz = 0. (4.29b)

We must note that forNp = 0, we havene = 1 andsz = 0, this constitutes a antiferromagnetic
state with half-filling.

From (4.20), the energy is given by

E

N
= J

[
Nh

N
(1− 2 ln 2) +

Np

N

(
3π

2
− 3

)]
(4.29c)

and, forNp = 0 we obtain the result of thet–J model.
As we know, it must verify

Np

N
6 ne 6

Nh + 2Np
N

(4.29d)

then, from (4.29a), this solution will only be true if,
Np

Nh
6 2. (4.29e)

5. The excitation spectrum

We start again from the BAE (4.6a), (4.6b). The more general string solutions will be of the
form,

v
(1)
k,(m) = v(1)k,M + im m = −M, . . . ,M (5.1a)

v
(2)
k,(m) = v(2)k,M ′ + im m = −M ′, . . . ,M ′ (5.1b)

with M andM ′ integer or half-odd integer.
Following the same method as before, we multiply the equations of the same string, and

we obtain that their centrev(i)k,M ′ , i = 1, 2, verifies the equations

2Nh arctan
v
(1)
k,M

M + 1
2

= 2πI (1)k,M +
∑
M ′′

ν
(2)
M′′∑
j=1

8M,M ′′(v
(1)
k,M − v(2)j,M ′′) (5.2a)

−2Np arctan
v
(2)
k,M

M + 1
2

= −2πI (2)k,M −
∑
M ′

ν
(2)
M′∑
j=1

9M,M ′(v
(2)
k,M − v(2)j,M ′)

+
∑
M ′′

ν
(1)
M′′∑
l=1

8M,M ′′(v
(2)
k,M − v(1)l,M ′′) (5.2b)

whereν(i)M is the number of strings in thei level, and the8 and9 functions are defined
in appendix B. A solution of (5.2a), (5.2b), is determined by specifying sets of integers or
half-odd integers{I (1)k,M} and the regions where the{C} roots are distributed.

As we did before, we define the functions,

F
(1)
M (λ) = Nh

π
arctan

λ

M + 1
2

− 1

2π

∑
M ′′

ν
(2)
M′′∑
j=1

8M,M ′′(λ− v(2)j,M ′′) (5.3a)

F
(2)
M (λ) = Np

π
arctan

λ

M + 1
2

− 1

2π

∑
M ′

ν
(2)
M′∑
j=1

9M,M ′(λ− v(2)j,M ′)
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+
1

2π

∑
M ′′

ν
(1)
M′′∑
j=1

8M,M ′′(λ− v(1)j,M ′′) (5.3b)

that are monotonically increasing and reach integer or half-odd integers values whenλ takes
the value of a root.

By counting the number of roots, and callingH(i)
M the number or holes in the sea of

M-strings at leveli, we have,

2I (i)max,M + 1= ν(i)M +H(i)
M (5.4)

and supposing that the centres of the strings are distributed along the real numbers,

2I (i)max,M + 1= F (i)M (∞) (5.5)

and then, using (5.3)–(5.5), we obtain,

ν
(1)
M +H(1)

M = Nh − 2
∑
M ′′>0

K(M,M ′′)ν(2)M ′′ (5.6a)

ν
(2)
M +H(2)

M = Np − 2
∑
M ′>0

J (M,M ′)ν(2)M ′ + 2
∑
M ′′>0

K(M,M ′′)ν(1)M ′′ (5.6b)

where

J (M1,M2) =
{

2M1 + 1
2 if M1 = M2

2 min(M1,M2) + 1 if M1 6= M2
(5.7)

and

K(M1,M2) =
{
M2 + 1

2 if M2 + 1
2 6 M1

M1 + 1
2 if M2 + 1

2 > M1.
(5.8)

Besides, the number of roots, obviously, must verify,

r =
∑
M>0

(2M + 1)ν(1)M (5.9a)

s =
∑
M>0

(2M + 1)ν(2)M (5.9b)

and now, we can apply (5.6a), (5.6b) and (5.9a), (5.9b) to the ground state, according to which
type of string we considered that forms it.

If we suppose, as before, that the ground state is formed with two seas of two-strings, we
have,

H
(1)
1
2
= Nh − ν(1)1

2
− ν(2)0 − 2

∑
M ′′> 1

2

ν
(2)
M ′′ (5.10a)

H
(2)
1
2
= Np − 2ν(2)0 − 4

∑
M ′> 1

2

ν
(2)
M ′ − ν(1)0 − 2

∑
M ′′> 1

2

ν
(1)
M ′′ (5.10b)

and then, with these results, we obtain from (4.28a), (4.28b),

H
(1)
1
2
= H(2)

1
2
= 0 (5.11)

that is to say, we have two two-string seas without holes.
Under these hypothesis we can analyse different types of excitations by introducing holes

in the ground state and keeping constant some observables. The one that we are going to
consider maintains constant the electron number and the magnetization

ne = const. sz = const. (5.12)
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then, by imposing (5.9a), (5.9b) and (5.10a), (5.10b), we obtain that the state must be
characterized having two real roots and a hole in level(1)

ν
(1)
0 = 2 H

(1)
1
2
= 1 (5.13)

and besides,

ν
(2)
0 = 0 ν

(1)
1
2
= 2Nh −Np

4
− 1 ν

(1)
M> 1

2
= 0

H
(2)
1
2
= 0 ν

(2)
1
2
= 2Nh +Np

8
ν
(2)
M> 1

2
= 0.

(5.14)

These conditions correspond to one of the two states, the first one is obtained from the ground
state by changing two consecutive sites with spin up to a new state with the two sites in spin
down, the second one is a state with one of the two sides without electrons and the other with
a pair.

Under our hypothesis about the ground state, we can calculate the contribution of every
hole and real root in both levels, to the energy of an excited state compared with the energy of
the ground state. Using (4.17), the equations (4.24a), (4.24b) must change to,

N

Nh
σ1(λ) +

1

Nh

∑
h1

δ(λ− θh1) =
1

2π

[
φ′(λ)− 1

Nh

∑
r2

φ′(λ− θr2)

−2N

Nh

∫
[C2]

[φ′(2(λ− µ)) + 1
3φ
′( 2

3(λ− µ))]σ2(µ) dµ

]
(5.15a)

N

Np
σ2(λ) +

1

Np

∑
h2

δ(λ− θh2) =
1

2π

[
φ′(λ) +

1

Np

∑
r1

φ′(λ− θr1)

− 2

Np

∑
r2

[φ′(2(λ− θr2)) + 1
3φ
′( 2

3(λ− θr2))]

+
2N

Np

∫
[C1]

[φ′(2(λ− µ)) + 1
3φ
′( 2

3(λ− µ))]σ1(µ) dµ

− N
Np

∫
[C1]

[2φ′(λ− µ) + 1
2φ
′( 1

2(λ− µ))]σ2(µ) dµ

]
(5.15b)

whereθhi parametrizes the holes at leveli andθri the real roots.
The system can be solved as before, by using the Fourier transform, and we obtain that

the distribution functions can be written as,

σ̂1(α) = σ̂1(0)(α) + σ̂1(n)(α) (5.16a)

σ̂2(α) = σ̂2(0)(α) + σ̂2(n)(α) (5.16b)

with

σ̂1(0)(α) = Nh

N

e−|α|

1 + e−|α|
− Np
N

e−3|α|/2

(1 + e−|α|)2
(5.17a)

σ̂2(0)(α) = Nh

N

e−3|α|/2

(1 + e−|α|)2
+
Np

N

e−|α|

(1 + e−|α|)3
(5.17b)

σ̂1(n)(α) = 1

N

[∑
h2

e−|α|/2

(1 + e−|α|)2
e−iαθh2 −

∑
h1

1

(1 + e−|α|)
e−iαθh1 −

∑
r1

e−3|α|/2

(1 + e−|α|)2
e−iαθr1

]
(5.17c)

σ̂2(n)(α) = 1

N

[∑
h1

e−|α|/2

(1 + e−|α|)2
e−iαθh1 −

∑
h2

1

(1 + e−|α|)3
e−iαθh2
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+
∑
r1

e−|α|

(1 + e−|α|)3
e−iαθr1 +

∑
r2

e−|α|/2

(1 + e−|α|)
e−iαθr2

]
. (5.17d)

The contribution to the energy per site is,

1e ≡ 1E

N
=
∫
φ′(µ)σ1(n)(µ) dµ +

1

N

∑
r1

1

(θ2
r1

+ 1
4)
. (5.18)

From this expression, we observe that the holes in both levels and only the real roots of the
first level contribute to the energy. A straightforward calculation shows the following rules:

(i) every hole in the first level gives a contribution1e = −ε1(θh1);
(ii) every hole in the second level gives a contribution1e = ε2(θh2);

(iii) every real root in the first level gives a contribution

1e = 1

N
sech(πθr1) + ε2(θr1)

(iv) every real root in the second level gives a contribution1e = 0, being

εn(v) = 1

nN

∫ ∞
0

cosαv

e
α
2 coshn α2

dα. (5.19)

We can apply these rules to the first example, where we have held constant the number
of electrons and magnetization with respect to the ground state and it is characterized by two
real roots and a hole. We can suppose that the roots and the hole are parametrized by the same
valueθ , it is said, the state is coming by changing a two-string of the ground state by two real
roots, which leaves a hole in the two-string sea. Performing the integrals in1e, we obtain for
the state,

1e = 1

N

[
2

cosh(πθ)
+ 2Re

[
9

(
1

2
+ iθ

)]
− 2Re

[
9

(
1

4
+ i
θ

2

)]
−4θ

(
Im

[
9

(
1

2
+ iθ

)]
− Im

[
9

(
1

4
+ i
θ

2

)])
−2Re

[
9

(
i
θ

2

)]
+ 2Re [9(iθ)] − 2(1 + 2 ln 2)

]
(5.20)

where9(x) is the derivative of the logarithm of the Euler gamma function.
Taking an alternating chainNh = Np = N/2, we can represent the energy given by

(5.20). The results are shown in figure 1. As we can see,1e is null out of an interval around
the origin. In conclusion, there is not an energy gap between the excited and the ground state.

Figure 1. Energy of the excited state.
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Appendix A

Using the relation of commutation (3.6c) we have

Ca1(λ1)Ca2(λ2) . . . Car (λr) = Cb2(λ2)Cb3(λ3) . . . Cbr (λr)Cb1(λ1)G(λ1, Eλ)b1,...,br
a1,...,ar

(A.1)

with

G(u, Eλ)b1,...,br
a1,...,ar

= r(u− λ1)
i1,a1
b1,a

r(u− λ2)
i2,a2
b2,i1

. . . r(u− λr)a,arbr ,ir−1
. (A.2)

Taking

M(j)(λj ) = G(λj , Eλ) ·G(λj−1, Eλ) · . . . ·G(λ1, Eλ) (A.3)

we have the relation

Ca1(λ1)Ca2(λ2) . . . Car (λr) = Cbk (λk) . . . Cbr (λr)Cb1(λ1) . . . Cbk−1(λk−1)M
(k−1)(λk−1)

b1,...,br
a1,...,ar

.

(A.4)

Appendix B

In this appendix, we are going to give brief remarks about the function,

φ(x) ≡ 2 arctan(x) = −i ln
1 + ix

1− ix
(B.1)

that takes values in the interval−π to +π whenx goes from−∞ to∞,
The function has the following properties, that can be proved by a straightforward

calculation:

φ(x + i) + φ(x − i) = π + φ
(x

2

)
(B.2)

φ(x + 2i) + φ(x − 2i) = φ
(x

3

)
− φ(x) (B.3)

φ

(
x +

i

2

)
+ φ

(
x − i

2

)
= φ

(
2x

3

)
+ φ(2x). (B.4)

The Fourier transform that we have used

ρ(λ) = 1

2π

∫ ∞
−∞

ρ̂(α)eiαλ dα ρ̂(α) =
∫ ∞
−∞

ρ(λ)e−iαλ dλ. (B.5)

The derivative of functionφ is
dφ(λ)

dx
= 2

1 +λ2
(B.6)

and then, the Fourier transform,∫ ∞
−∞

φ′(λ)e−iαλ dλ = e−|α|. (B.7)

It is convenient to define the functions

9M1,M2(x) = 2
M2+M1∑

n=|M2−M1|

[
arctan

x

n
+ arctan

x

n + 1

]
(B.8)

and

8M1,M2(x) = 2
M1∑

n=−M1

arctan
x + in

M2 + 1
2

. (B.9)
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